Novelty Detection in Time Series Data using Ideas from Immunology

نویسندگان

  • Dipankar Dasgupta
  • Stephanie Forrest
چکیده

Detecting anomalies in time series data is a problem of great practical interest in many manufacturing and signal processing applications. This paper presents a novelty detection algorithm inspired by the negative-selection mechanism of the immune system, which discriminates between self and other. Here self is deened to be normal data patterns and non-self is any deviation exceeding an allowable variation. Experiments with this novelty detection algorithm are reported for two data sets-simulated cutting dynamics in a milling operation and a synthetic signal. The results of the experiments exhibiting the performance of the algorithm in detecting novel patterns are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Detection of Trends in Time Series of Functional Data

A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...

متن کامل

Traffic Condition Detection in Freeway by using Autocorrelation of Density and Flow

Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...

متن کامل

Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

A Method Based on RBF-DDA Neural Networks for Improving Novelty Detection in Time Series

Novelty detection in time series is an important problem with application in different domains such as machine failure detection, fraud detection and auditing. An approach to this problem uses time series forecasting by neural networks. However, time series forecasting is a difficult problem, thus, the use of this technique for time series novelty detection is sometimes criticized. Alternativel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995